x→−∞lim(x5c(1+x7+x52)c−x) =x→−∞limx(x5c−1(1+x7+x52)c−1)
This will be of the form ∞×0 only, if 5c−1=0 ⇒c=51 substituting c=51, λ becomes
Thus, λ=x→−∞lim[(1+x)1/5−1]
where x=x7+x52 =x→−∞limx[1+5x+….−1] =x→−∞limx(x7+x52)⋅51=57
Hence, c=51 and λ=57 ⇒3c+λ=2