Let x be the variate which assumes the values 0,1,2,....,n with frequencies qn,nC1pqn−1,nC2p2qn−2,...,pn
such that p+q=1
and σ2( variance) =∑fi∑fixi2−(∑fi∑fixi)2
where Σfi=qn+nC1pqn−1+nC2p2qn−2+...+pn=1
Now,
Now, ∑fi=1,∑fi∑fixi=np and ∑fixi2=∑r2nCrprqn−r
Now, mean =np
and σ2 (variance) =r=0∑nr2nCrprqn−r−(np)2 =r=0∑n[r(r−1)+r]nCrprqn−r−n2p2 ?
=r=0∑nr(r−1)nCrprqn−r+=r=0∑nrnnCrprqn−r−n2p2 =r=0∑nr(r−1)r(r−1)n(n−1)n−2Cr−2prqn−r +=r=0∑nrrnn−1Cr−1prqn−r−n2p2 =n(n−1)p2(p+q)n−2+np(p+q)n−1−n2p2 ⇒σ2=np(1−p)=npq