Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
For a B.D., variance is given by the formula
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. For a $B.D.$, variance is given by the formula
Probability - Part 2
A
$\sigma^2 = npq^2$
B
$\sigma^2 = \frac{\sqrt{npq}}{2}$
C
$\sigma^2 = npq$
D
$\sigma^2 = n^2p^2q^2$
Solution:
Let $x$ be the variate which assumes the values
$0, 1,2,....,n$ with frequencies
$q^n, \,{}^nC_1 pq^{n - 1}, \,{}^nC_2 p^2q^{n - 2},..., p^n$
such that $p + q = 1$
and $\sigma^2($ variance) $= \frac{\sum f_{i}x^{2}_{i}}{\sum f_{i}} - \left(\frac{\sum f_{i} x_{i}}{\sum f_{i}}\right)^{2}$
where $\Sigma f_i = q^n + \,{}^nC_1 pq^{n-1} + \,{}^nC_2p^2q^{n - 2} + ... +p^n = 1$
Now,
Now, $\sum f_i = 1, \frac{\sum f_ix_i}{\sum f_i}= np$ and $\sum f_ix_i^2 = \sum r^2 \,{}^nC_r p^r q^{n-r}$
Now, mean $= n p$
and $\sigma^2$ (variance) $ = \displaystyle\sum_{r = 0}^{n} r^2 \,{}^nC_r p^r q^{n-r} - (np)^2$
$ = \displaystyle\sum_{r = 0}^{n} [r(r - 1) + r]\,{}^nC_r p^r q^{n-r} - n^2 p^2$
? $ = \displaystyle\sum_{r = 0}^{n} r(r-1)\,{}^nC_r p^rq^{n-r} + = \displaystyle\sum_{r = 0}^{n} r^n\,{}^nC_r p^rq^{n-r} - n^2p^2$
$ = \displaystyle\sum_{r = 0}^{n} r(r-1) \frac{n(n-1)}{r(r-1)} \,{}^{n-2}C_{r-2} p^r q^{n-r}$
$+ = \displaystyle\sum_{r = 0}^{n} r \frac{n}{r} \,{}^{n-1}C_{r-1} p^r q^{n-r} - n^2p^2$
$= n(n - 1) p^2(p + q)^{n-2} + np(p + q)^{n- 1} - n^2p^2$
$\Rightarrow \sigma^2 = np(1 - p) = npq$