Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Fior real number x, if the minimum value of f(x)=x2+2 b x+2 c2 is greater than the maximum value of g(x)=-x2-2 c x+b2, then
Q. Fior real number
x
, if the minimum value of
f
(
x
)
=
x
2
+
2
b
x
+
2
c
2
is greater than the maximum value of
g
(
x
)
=
−
x
2
−
2
c
x
+
b
2
, then
1695
272
AP EAMCET
AP EAMCET 2018
Report Error
A
c
2
>
2
b
2
B
c
2
<
2
b
2
C
b
2
=
2
c
2
D
c
2
=
2
b
2
Solution:
We have,
f
(
x
)
=
x
2
+
2
b
x
+
2
c
2
=
(
x
+
b
)
2
+
2
c
2
−
b
2
∴
Minimum value of
f
(
x
)
=
2
c
2
−
b
2
Again,
g
(
x
)
=
−
x
2
−
2
c
x
+
b
2
=
−
[
x
2
+
2
c
x
−
b
2
]
=
−
[
(
x
+
c
)
2
−
b
2
−
c
2
]
=
−
(
x
+
c
)
2
+
b
2
+
c
2
∴
Maximum value of
g
(
x
)
=
b
2
+
c
2
Now, according to the question.
2
c
2
−
b
2
>
b
2
+
c
2
⇒
c
2
>
2
b
2