Q.
Find the values of x,y and z from the following equations [42+yx−zxz]=[4−1310]
1768
175
J & K CETJ & K CET 2014Matrices
Report Error
Solution:
Given, [42+yx−zxz]=[4−1310]
On comparing the corresponding elements, we get x−z=3 ..(i) 2+y=−1 ⇒y=−1−2=−3 ..(ii)
and xz=10 ..(iii)
Now, (x+z)2=(x−z)2+4xz =(3)2+4×10 =9+40 ⇒(x+z)2=49 ⇒x+z=7 ..(iv)
On adding Eq. (i) and (iv), we get 2x=10 ⇒x=5
From Eq. (i), we get 5−z=3 ⇒−z=3−5 ⇒z=2
Hence, x=5,y=−3,z=2