Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Find the value of x satisfying the equation (1/ log 6(x+3))+(2 log 0.25(4-x)/ log 0.5(x+3))=0.
Q. Find the value of
x
satisfying the equation
l
o
g
6
(
x
+
3
)
1
+
l
o
g
0.5
(
x
+
3
)
2
l
o
g
0.25
(
4
−
x
)
=
0
.
212
111
Continuity and Differentiability
Report Error
Answer:
3
Solution:
lo
g
x
+
3
6
−
lo
g
x
+
3
(
x
+
3
)
+
(
l
o
g
0.5
0.25
)
l
o
g
0.5
(
x
+
3
)
2
l
o
g
0.5
(
4
−
x
)
=
0
lo
g
x
+
3
(
x
+
3
6
)
+
l
o
g
0.5
(
x
+
3
)
l
o
g
0.5
(
4
−
x
)
=
0
⇒
lo
g
x
+
3
(
x
+
3
6
)
+
lo
g
x
+
3
(
4
−
x
)
=
0
⇒
lo
g
x
+
3
(
x
+
3
6
(
4
−
x
)
)
=
0
⇒
x
+
3
6
(
4
−
x
)
=
1
⇒
24
−
6
x
=
x
+
3
⇒
7
x
=
21
⇒
x
=
3