Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Find the value of the following determinants. | beginmatrix-a(b2+c2-a2)&2b3&2c3 2a3&-b(c2+a2-b2)&2c3 2a3&2b3&-c(a2+b2+c2)2 endmatrix|
Q. Find the value of the following determinants.
∣
∣
−
a
(
b
2
+
c
2
−
a
2
)
2
a
3
2
a
3
2
b
3
−
b
(
c
2
+
a
2
−
b
2
)
2
b
3
2
c
3
2
c
3
−
c
(
a
2
+
b
2
+
c
2
)
2
∣
∣
1233
230
Determinants
Report Error
A
ab
c
(
a
2
+
b
2
+
c
2
)
3
50%
B
(
a
2
+
b
2
+
c
2
)
2
0%
C
ab
c
50%
D
None of these
0%
Solution:
Let
Δ
=
∣
∣
−
a
(
b
2
+
c
2
−
a
2
)
2
a
3
2
a
3
2
b
3
−
b
(
a
2
+
c
2
−
b
2
)
2
b
3
2
c
3
2
c
3
−
c
(
a
2
+
b
2
−
c
2
)
∣
∣
Taking
a
,
b
,
c
common from
C
1
, and
C
3
respectively, we get
Δ
=
ab
c
∣
∣
a
2
−
b
2
−
c
2
2
a
2
2
a
2
2
b
2
b
2
−
c
2
−
a
2
2
b
2
2
c
2
2
c
2
c
2
−
a
2
−
b
2
∣
∣
Applying
C
1
→
C
1
+
C
2
+
C
3
, we get
Δ
=
ab
c
∣
∣
a
2
+
b
2
+
c
2
a
2
+
b
2
+
c
2
a
2
+
b
2
+
c
2
2
b
2
b
2
−
c
2
−
a
2
2
b
2
2
c
2
2
c
2
c
2
−
a
2
−
b
2
∣
∣
Taking
(
a
2
+
b
2
+
c
2
)
common from
C
1
, we get
Δ
=
ab
c
(
a
2
+
b
2
+
c
2
)
∣
∣
1
1
1
2
b
2
b
2
−
c
2
−
a
2
2
b
2
2
c
2
2
c
2
c
2
−
a
2
−
b
2
∣
∣
Applying
R
1
→
R
1
−
R
2
,
R
2
→
R
2
−
R
3
, we get
Δ
=
ab
c
(
a
2
+
b
2
+
c
2
)
∣
∣
0
0
1
b
2
+
c
2
+
a
2
−
(
b
2
+
c
2
+
a
2
)
2
b
2
0
(
a
2
+
b
2
+
c
2
)
c
2
−
a
2
−
b
2
∣
∣
Taking
a
2
+
b
2
+
c
2
common from
R
1
and
R
2
, we get
Δ
=
ab
c
(
a
2
+
b
2
+
c
2
)
3
∣
∣
0
0
1
1
−
1
2
b
2
0
1
c
2
−
a
2
−
b
2
∣
∣
Expanding along
C
1
, we get
Δ
=
ab
c
(
a
2
+
b
2
+
c
2
)
3
(
1
)
=
ab
c
(
a
2
+
b
2
+
c
2
)
3