Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Find the value of the following determinants. | beginmatrixa&b&c a-b&b-c&c-a b+c&c+a&a+b endmatrix|
Q. Find the value of the following determinants.
∣
∣
a
a
−
b
b
+
c
b
b
−
c
c
+
a
c
c
−
a
a
+
b
∣
∣
1210
214
Determinants
Report Error
A
(
a
+
b
+
c
)
2
25%
B
a
3
+
b
3
+
c
3
−
3
ab
c
39%
C
(
a
+
b
+
c
)
3
30%
D
a
3
+
b
3
+
c
3
5%
Solution:
Let
Δ
=
∣
∣
a
a
−
b
b
+
c
b
b
−
c
a
+
c
c
c
−
a
a
+
b
∣
∣
Applying
C
1
→
C
1
+
C
2
+
C
3
, we get
Δ
=
∣
∣
a
+
b
+
c
0
2
(
a
+
b
+
c
)
b
b
−
c
a
+
c
c
c
−
a
a
+
b
∣
∣
Taking
(
a
+
b
+
c
)
common from
C
1
, we get
Δ
=
(
a
+
b
+
c
)
∣
∣
1
0
2
b
b
−
c
a
+
c
c
c
−
a
a
+
b
∣
∣
Applying
R
3
→
R
3
−
2
R
1
, we get
Δ
=
(
a
+
b
+
c
)
∣
∣
1
0
0
b
b
−
c
a
+
c
−
2
b
c
c
−
a
a
+
b
−
2
c
∣
∣
Expanding along
C
1
, we get
Δ
=
(
a
+
b
+
c
)
[
(
b
−
c
)
(
a
+
b
−
2
c
)
−
(
c
−
a
)
(
a
+
c
−
2
b
)
]
=
(
a
+
b
+
c
)
[
a
2
+
b
2
+
c
2
−
ab
−
b
c
−
a
c
]
=
a
3
+
b
3
+
c
3
−
3
ab
c