Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Find the value of tan(α + β), given that cotα=(1/2), α∈(π, (3π/2)) and secβ=(-5/3), β∈((π/2), π).
Q. Find the value of
t
an
(
α
+
β
)
, given that
co
t
α
=
2
1
,
α
∈
(
π
,
2
3
π
)
and
sec
β
=
3
−
5
,
β
∈
(
2
π
,
π
)
.
2209
179
Trigonometric Functions
Report Error
A
1/11
7%
B
2/11
63%
C
5/11
20%
D
3/11
10%
Solution:
Given,
co
t
α
=
2
1
,
⇒
t
an
α
=
2
and
sec
β
=
3
−
5
Then,
t
an
β
=
se
c
2
β
−
1
⇒
t
an
β
=
±
3
4
But,
t
an
β
=
3
−
4
(
∵
t
an
β
is -
v
e
in
II
quadrant
)
∴
t
an
(
α
+
β
)
=
1
−
t
an
α
⋅
t
an
β
t
an
α
+
t
an
β
=
1
−
(
2
)
(
3
−
4
)
2
+
(
−
3
4
)
=
11
2