Q.
Find the value of [cos1−cos−11]−[sin1−sin−11]+[tan1−tan−11]−[cot1−cot−11]+[sec1−sec−11]−[cosec1−cosec−11]
where [x] denotes greatest integer less than or equal to x.
As cos1−cos−11=cos1−0∈(0,1)⇒[cos1−cos−11]=0 sin1−sin−11=sin1−2π∈(−1,0)⇒[sin1−sin−11]=−1 tan1−tan−11=tan1−4π≈1.73−0.78>0 and ∈(0,1)⇒[tan1−tan−11]=0{tan1≈tan3π} cot1−cot−11=cot1−4π≈0.57−0.78<0 and ∈(−1,0)⇒[cot1−cot−11]=−1 sec1−sec−11=sec1−0<sec3π=2. As sec1∈(1,2)⇒[sec1−sec−11]=1 and cosec1−cosec−11=cosec1−2π
As cosec3π<cosec1<cosec4π<2π⇒cosec1∈(32,2) ∴cosec1−2π∈(−1,0)⇒[cosec1−cosec−11]=−1
Hence the value of given exprersion =0−(−1)+0−(−1)+1−(−1)=1+1+1+1=4