Let 16sin2x=y 16cos2x=161−sin2x=16y−1
The equation can be written as y+y16=10 ⇒y2−10y+16=0 ⇒(y−8)(y−2)=0 y=8,y=2
If y=8 ⇒16sin2x=23 ⇒24sin2x=23 ⇒sin2x=43 ⇒sin2x=±sin2π/3 ⇒x=nπ±π/3
Which gives 3 solutions in [0,3π]
If y=2 ⇒16sin2x=2 ⇒4sin2x=1 ⇒sin2x=41 ⇒sin2x=sin2π/6 ⇒x=nπ±π/6
this also gives 3 solutions in [0,3π]
Solutions of 16sin2x=16cos2x=10 in x∈[0,3π]=6.