Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Find the solution of the differential equation (ey-x) d y=(ex-ey) d x
Q. Find the solution of the differential equation
(
e
y
−
x
)
d
y
=
(
e
x
−
e
y
)
d
x
2063
191
AP EAMCET
AP EAMCET 2020
Report Error
A
e
y
e
x
=
e
2
x
−
e
x
2
+
c
B
e
y
e
x
=
e
x
e
e
x
−
e
e
x
+
c
C
e
y
e
e
x
=
e
x
e
e
x
−
e
e
x
+
c
D
e
e
y
e
x
=
e
x
e
e
x
−
e
e
x
+
c
Solution:
(
e
y
−
x
)
d
y
=
(
e
x
−
e
y
)
d
x
⇒
e
y
⋅
d
x
d
y
=
e
2
x
−
e
x
⋅
e
y
⇒
e
y
⋅
d
x
d
y
+
e
x
⋅
e
y
=
e
2
x
Let
e
y
=
z
⇒
e
y
⋅
d
x
d
y
=
d
x
d
z
⇒
d
x
d
z
+
e
x
⋅
z
=
e
2
x
IF
=
e
∫
e
z
x
⋅
d
x
=
e
e
x
∴
Solution is
Z
⋅
e
e
x
=
∫
e
2
x
⋅
e
e
x
⋅
d
x
+
c
Let
e
x
=
u
e
x
⋅
d
x
=
d
u
⇒
Z
⋅
e
e
x
=
∫
u
⋅
e
u
d
u
+
c
=
u
e
u
−
e
u
+
c
⇒
e
y
⋅
e
e
x
=
e
e
x
(
e
x
−
1
)
+
c