Let tan−1(−3)=α ⇒tanα=−3=−tan3π =tan(−3π) ⇒α=3−π∈(2−π,2π) ∴ Principal value of tan−1(−3) is (3−π)
Let sec−1(−2)=β ⇒secβ=−2 =−sec3π =sec(π−3π) =sec(32π) ⇒β=32π∈[0,π]−{2π} ∴ Principal value of sec−1(−2) is 32π
Let cosec−1(32)=γ ⇒cosecγ=32 =cosec3π ⇒γ=3π∈[2−π,2π]−{0} ∴ Principal value of cosec−1(32) is 3π
So, the principal value of tan−1(−3)+sec−1(−2)−cosec−1(32) =3−π+32π−3π =0