We have, f(x)=−43x4−8x3−245x2+105 ⇒f′(x)=−3x3−24x2−45x =−3x(x2+8x+15)
For local maximum or local minimum, we must have f′(x)=0 ⇒−3x(x2+8x+15)=0 ⇒3x(x+3)(x+5)=0 ⇒x=0, −3, −5
Thus, x=0, x=−3 and x=−5 are the possible points of local maxima or minima.
Now we test the function at each of these points.
We have, f′′(x)=−9x2−48x−45
At x=0 : We have, f′′(0)=−45<0
So, x=0 is point of local maximum.
At x=−3 : We have, f′′(−3)=−9(−3)2−48(−3)−45=18>0
So, x=−3 is a point of local minimum.
At x=−5 : We have, f′′(−5)=−9(−5)2−48(−5)−45=−30<0
So, x=−5 is point of local maximum.