Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Find the number of solutions of the equation sin4x=1+ tan4x in (0 , 4 π ) .
Q. Find the number of solutions of the equation
sin
4
x
=
1
+
tan
4
x
in
(
0
,
4
π
)
.
84
187
NTA Abhyas
NTA Abhyas 2022
Report Error
Answer:
0
Solution:
We have,
s
i
n
4
x
=
1
+
t
a
n
4
x
∴
0
≤
sin
4
x
≤
1
,
(
∵
sin
x
∈
[
−
1
,
1
])
and
1
≤
1
+
tan
4
x
<
∞
,
(
∵
tan
x
∈
R
)
So,
L
H
S
=
R
H
S
=
1
⇒
sin
4
x
=
1
and
1
+
tan
4
x
=
1
⇒
sin
2
x
=
1
and
tan
x
=
0
So, This is not possible, so the given equation have no solution.