Q.
Find the number of positive integral values of k for which kx2+(k−3)x+1<0 for atleast one positive x.
236
106
Complex Numbers and Quadratic Equations
Report Error
Answer: 0
Solution:
Let f(x)=k2+(k−3)x+1,k∈N.
Here, f(0)=1 and product of roots =k1>0
Now, for f(x)<0 for atleast one positive x, sum of roots >0 ⇒k−(k−3)>0⇒kk−3<0⇒k∈(0,3) ....(1)
Also, D>0 ⇒(k−3)2−4k>0⇒k2−6k−4k+9>0⇒k2−10k+9>0 ⇒(k−9)(k−1)>0⇒k∈(−∞,−1)∪(9,∞)....(2) ∴(1)∩(2) ⇒k∈(0,1)
Hence, number of positive integral values of k is zero.