Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Find the new position of origin so that equation x2+4 x+8 y-2=0 will not contain a term in x and the costant term.
Q. Find the new position of origin so that equation
x
2
+
4
x
+
8
y
−
2
=
0
will not contain a term in
x
and the costant term.
435
154
Straight Lines
Report Error
A
(
4
3
,
4
)
B
(
4
3
,
−
2
)
C
(
−
2
,
4
3
)
D
(
−
2
,
−
4
3
)
Solution:
x
=
x
+
h
&
y
=
y
+
k
(
x
+
h
)
2
+
4
(
x
+
h
)
+
8
(
y
+
k
)
−
2
=
0
x
2
+
(
2
h
+
4
)
x
+
8
y
+
(
h
2
+
4
h
+
8
k
−
2
)
=
0
∴
2
h
+
4
=
0&
h
2
+
4
h
+
8
k
−
2
=
0
h
=
−
2
4
−
8
+
8
k
−
2
=
0
k
=
8
6
=
4
3
(
−
2
,
4
3
)