We have, y=f(x)=sin4x+cos4x ⇒dxdy=f(x)=4sin3xcosx−4cos3xsinx ⇒dxdy=−4cosxsinx(cos2x−sin2x) ⇒dxdy=−2sin2xcos2x=−sin4x
For a local maximum or a local minimum, we have dxdy=0 ⇒−sin4x=0 ⇒sin4x=0 ⇒4x=π ⇒x=4π [∵0<x<2π∴0<4x<2π] ∴dx2d2y=−4cos4x ⇒[dx2d2y]x=π/4
So, x=4π is a point of local minimum.
The local minimum value of f(x) at x=4π is f(4π)=(sin4π)4+(cos4π)4 =21.