Circle with centre (−6,10) and radius =36+100−120=4
Now let (a,0) be a point on the x-axis.
If y is the distance from A to P and P to M y=(a−2)2+25+(a+6)2+100−4 dady=2(a−2)2+252(a−2)+2(a+6)2+1002(a+6) da dy can be zero only if a−2>0 and a+6<0 not possible or a−2<0 and a+6>0 hence a∈(−6,2)
solving dady=0, gives a=10 (rejected) or a=−32 hence ymin=964+25+9256+100−4 =317+31156−4=317+334−4=17−4=13