Q.
Find the largest integral value of x satisfying the inequality log0.09(x2+2x)≥log0.3x+2.
339
70
Complex Numbers and Quadratic Equations
Report Error
Answer: 1
Solution:
log0.09(x2+2x) is defined, when x2+2x>0⇒x(x+2)>0 ⇒x∈(−∞,−2)Y(0,∞) .....(1)
And log0.3x+2 is defined, when x+2>0⇒x∈(−2,∞) ....(2)
Also log0.09(x2+2x)≥log0.3x+2 ⇒21log0.3(x2+2x)≥log0.3x+2 ⇒log0.3(x2+2x)≥log0.3(x+2) ⇒x2+2x≤x+2 ⇒x2+x−2≤0⇒(x+2)(x−1)≤0 ⇒x∈[−2,1] ∴ From (1), (2) and (3), we get x∈(0,1].
Hence largest integral value of x=1. Ans.]