Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Find the greatest possible integral value of (b-a/ tan -1 b- tan -1 a), where 0<a<b<√3
Q. Find the greatest possible integral value of
t
a
n
−
1
b
−
t
a
n
−
1
a
b
−
a
, where
0
<
a
<
b
<
3
174
142
Application of Derivatives
Report Error
Answer:
0003
Solution:
Let
f
(
x
)
=
tan
−
1
x
,
x
∈
[
a
,
b
]
∴
Using LMVT, we get
b
−
a
t
a
n
−
1
b
−
t
a
n
−
1
a
=
1
+
c
2
1
, where
0
<
a
<
c
<
b
<
3
So,
1
<
(
t
a
n
−
1
b
−
t
a
n
−
1
a
b
−
a
)
<
4
As,
4
1
<
1
+
c
2
1
<
1
⇒
The greatest possible integral value is 3.