Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Find the general solution for the equation cos4x = cos2x.
Q. Find the general solution for the equation
cos
4
x
=
cos
2
x
.
1580
195
Trigonometric Functions
Report Error
A
2
nπ
,
n
∈
Z
12%
B
nπ
,
n
∈
Z
16%
C
3
nπ
,
n
∈
Z
23%
D
Both
(
b
)
and
(
c
)
49%
Solution:
We have,
cos
4
x
=
cos
2
x
∴
The general solution is
4
x
=
2
nπ
±
2
x
[
∵
cos
θ
=
cos
α
⇒
θ
=
2
nπ
±
α
,
n
∈
Z
]
⇒
4
x
=
2
nπ
+
2
x
or
4
x
=
2
nπ
−
2
x
⇒
4
x
−
2
x
=
2
nπ
or
4
x
+
2
x
=
2
nπ
⇒
2
x
=
2
nπ
or
6
x
=
2
nπ
⇒
x
=
nπ
or
x
=
3
1
nπ
, where
n
∈
Z
Hence, the required general solution is
x
=
3
nπ
,
n
∈
Z
.