Let the equation of the required circle be x2+y2+2gx+2fy+c=0.... (i)
It passes through (−4,3). ∴25−8g+6f+c=0....(ii)
Since, circle touches the line x+y−2=0 and x−y−2=0. ∴∣∣2−g−f−2∣∣=∣∣2−g+f−2∣∣=g2+f2−c.... (iii)
Now, ∣∣2−g−f−2∣∣=∣∣2−g+f−2∣∣ ⇒−g−f−2=±(−g+f−2) ⇒−g−f−2=−g+f−2
or −g−f−2=g−f+2 ⇒f=0 or g=−2
Case I When f=0
From Eq. (iii), we get ∣∣2−g−2∣∣=g2−c ⇒(g+2)2=2(g2−c) ⇒g2−4g−4−2c=0....(iv)
On putting f=0 in Eq. (ii). we get 25−8g+c=0.... (v)
Eliminating c between Eqs. (iv) and (v), we get ⇒g2−20g+46=0 g=10±36 and c=55±246
On substituting the values of g,f and c in Eq. (i), we get x2+y2+2(10±36)x+(55±246)=0
Case II When g=−2
From Eq. (iii), we get ⇒f2=2(4+f2−c) ⇒f2−2c+8=0.....(vi)
On putting g=−2 in Eq. (ii), we get c=−6f−41
On substituting c in Eq. (vi), we get f2+12f+90=0
This equation gives imaginary values of f.
Thus, there is no circle in this case.
Hence, the required equations of the circles are x2+y2+2(10±36)x+(55±246)=0