Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Find the derivative with respect to x of the function y= ( log cos x sin x)( log sin x cos x)-1+ sin -1((2 x/1+x2)) at x=(π/4).
Q. Find the derivative with respect to
x
of the function
y
=
{
(
lo
g
c
o
s
x
sin
x
)
(
lo
g
s
i
n
x
cos
x
)
−
1
+
sin
−
1
(
1
+
x
2
2
x
)
}
at
x
=
4
π
.
1335
215
IIT JEE
IIT JEE 1984
Continuity and Differentiability
Report Error
A
B
C
D
Solution:
Given,
y
=
{
(
lo
g
c
o
s
x
sin
x
)
(
lo
g
s
i
n
x
cos
x
)
−
1
+
sin
−
1
(
1
+
x
2
2
x
)
}
∴
y
=
(
l
o
g
e
(
c
o
s
x
)
l
o
g
e
(
s
i
n
x
)
)
2
+
sin
−
1
(
1
+
x
2
2
x
)
⇒
d
x
d
y
=
2
{
l
o
g
e
(
c
o
s
x
)
l
o
g
e
(
s
i
n
x
)
+
{
l
o
g
e
(
c
o
s
x
)
}
2
(
l
o
g
e
(
c
o
s
x
)
.
c
o
t
x
l
o
g
e
(
s
i
n
x
)
⋅
t
a
n
x
)
}
+
1
+
x
2
2
⇒
(
d
x
d
y
)
(
x
=
4
π
)
=
2
{
1
⋅
(
l
o
g
2
1
)
2
2
⋅
l
o
g
(
2
1
)
}
+
1
+
16
π
2
2
=
−
l
o
g
e
2
8
+
16
+
π
2
32