Q.
Find the coordinates of a point equidistant from the four points O(0,0,0), A(l,0,0), B(0,m,0) and C(0,0,n).
1994
241
Introduction to Three Dimensional Geometry
Report Error
Solution:
Let P(x,y,z) be the required point.
Then OP=PA=PB=PC.
Now OP=PA ⇒OP2=PA2 ⇒x2+y2+z2=(x−l)2+(y−0)2+(z−0)2 ⇒x=2l
Similarly, OP=PB ⇒y=2m and OP=PC ⇒z=2n
Hence, the coordinates of the required point are (2l,2m,2n).