(1+2a)4=4C0+4C1(2a)+4C2(2a)2+4C3(2a)3+ 4C4(2a)4=1+8a+24a2+32a3+16a4
and (2−a)5=5C0(2)5−5C1(2)4(a)+5C4(2)3(a)2 −5C3(2)2(a)3+5C4(2)(a)4−5C5(a)5 =32−80a+80a2−40a3+10a4−a5
Thus (1+2a)4(2−a)5 =(1+8a+24a2+32a3+16a4)(32−80a+80a2−40a3+10a4−a5) ∴ The terms containing a4 are 1(10a4)+(8a)(−40a3)+(24a2)(80a2)+(32a3)(−80a)+ (16a4)(32)=−438a4
Thus, the coefficient of a4 in the given product is −438.