The given parabola is y=43x2…(i)
and the line is 3x−2y+12=0…(ii)
Solving (1) & (2), we get 3x−2(43x2)+12=0 ⇒3x−23x2+12=0 ⇒6x−3x2+24=0 ⇒x2−2x−8=0 ⇒(x−4)(x+2)=0 ⇒x=4,−2.
Putting values of x in (1), we get y=43(4)2=12 and y=43(−2)2=3.
Hence, the line and parabola intersects at the points (−2,3) and (4,12).
∴ Required area = area (ABCDA) =−2∫4(23x+12)dx−(−2∫043x2dx+0∫443x2dx)