Let θ be the angle between the line and the normal to the plane. Converting the given equations into vector form, we have r=(−i^+3k^)+λ(2i^+3j^+6k^) and r.(10i^+2j^−11k^)=3
Here, b=2i^+3j^+6k^ and n=10i^+2j^−11k^ sinϕ=∣∣22+32+62102+22+112(2i^+3j^+6k^).(10i^+2j^−11k^)∣∣ =∣∣7×15−40∣∣=∣∣21−8∣∣=218 or ϕ=sin−1(218)