Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Find the absolute value of parameter t for which the area of the triangle whose vertices are A (-1,1,2); B (1,2,3) and C ( t , 1,1) is minimum.
Q. Find the absolute value of parameter
t
for which the area of the triangle whose vertices are
A
(
−
1
,
1
,
2
)
;
B
(
1
,
2
,
3
)
and
C
(
t
,
1
,
1
)
is minimum.
2016
218
Vector Algebra
Report Error
Answer:
2
Solution:
A
B
=
2
i
^
+
j
^
+
k
^
,
A
C
=
(
t
+
1
)
i
^
+
0
j
^
−
k
^
A
B
×
A
C
=
∣
∣
i
^
2
t
+
1
j
^
1
0
k
^
1
−
1
∣
∣
=
−
i
^
+
(
t
+
3
)
j
^
−
(
t
+
1
)
k
^
=
1
+
(
t
+
3
)
2
+
(
t
+
1
)
2
=
2
t
2
+
8
t
+
11
Area of
Δ
A
BC
=
2
1
∣
A
B
×
A
C
∣
=
2
1
2
t
2
+
8
t
+
1
let
f
(
t
)
Δ
2
=
4
1
(
2
t
2
+
8
t
+
1
)
f
′
(
t
)
=
0
⇒
t
=
−
2
At
t
=
−
2.
f
′′
(
t
)
>
0
so
Δ
is minimum at
t
=
−
2