Q.
Find sum of all integral values of a in [1,100] for which the equation x2−(a−5)x+(a−415)=0 has atleast one root greater than zero.
602
80
Complex Numbers and Quadratic Equations
Report Error
Answer: 5011
Solution:
We have x2−(a−5)x+(a−415)=0
Now, discriminant ≥0 ⇒(a−5)2−4(a−415)≥0⇒(a−4)(a−10)≥0⇒a∈(−∞,4]∪[10,∞)
CASE-I: When both roots are positive. D≥0,a−5>0,a−415>0⇒D≥0,a>5,a≥415, so a∈[10,∞)
CASE-II: When exactly one root is positive. a−415<0, so a<415....(2) ∴ From (1) and (2), we conclude that a∈(−∞,415)∪[10,∞)
Hence, sum of all integral values of a in [1,100]=(1+2+3)+(10+11+12+…….+100) =6+5005=5011