Let a=3i^+j^​+2k^,b=i^+j^​+2k^ then a×b=∣∣​i^31​j^​11​k^22​∣∣​ =i^(2−2)−j^​(6−2)+k^(3−1) =−4j^​+2k^ ∣a×b∣=(−4)2+(2)2​=16+4​=20​
Since, ∣a×b∣=∣a×b∣sinθ,
If θ is angle between a and b ⇒20​=9+1+4​1+1+4​sinθ ⇒sinθ=6​14​20​​ ⇒sinθ=6×1420​​=215​​