We have (2+3x)9=29(1+23x)9
Now, TrTr+1=29[9Cr−1(23x)r−1]29[9Cr(23x)r] =9Cr−19Cr∣∣23x∣∣=r10−r∣∣23x∣∣ =r10−r(49)[∵x=23]
Therefore, TrTr+1≥1 ⇒4r90−9r≥1 ⇒90−9r≥4r ⇒r≤1390 ⇒r≤61312
Thus, the maximum value of r is 6. Therefore, the greatest term is Tr+1=T7. T7=29[9C6(23x)6] =29⋅9C6(49)6 =29⋅3×2×19×8×7(212312)=27×313