Q.
Find dxdy at x=−1, when (siny)sin2πx+23sec−1(2x)+2xtanln(x+2)=0.
1810
250
IIT JEEIIT JEE 1991Continuity and Differentiability
Report Error
Solution:
Here, (siny)sin2πx+23sec−1(2x)+2xtan{log(x+2)}=0
On differentiating both sides, we get (siny)sin2πx⋅log(siny)⋅cos2πx⋅2π +(sin2πx)(siny)(sin2πx)−1⋅cosy⋅dxdy +23⋅(2∣x∣)4x2−12+(x+2)2x⋅sec2{log(x+2)} +2xlog2⋅tan{log(x+2)}=0
Putting (x=−1,y=−π3), we get dxdy=1−(π3)2(−π3)2=ππ2−33