Let f(x)=3x4−8x3+12x2−48x+1. Then, f′(x)=12x3−24x2+24x−48 and f′′(x)=36x2−48x+24
Now, f′(x)=0 ⇒12x3−24x2+24x−48=0 ⇒x3−2x2+2x−4=0 ⇒x2(x−2)+2(x−2)=0 ⇒(x−2)(x2+2)=0 ⇒x=2[∵x2+2=0]
At x=2, we have f′′(x)=36(2)2−48(2)+24=72>0.
So, x=2 is a point of local minimum.
Now, f(2)=−63, f(1)=−40 and f(4)=257.
So, the minimum and maximum values of f(x) on [1,4] are −63 and 257 respectively.