In the definition of function f(x)=q−px(x−p)+(p−q)x(p−q)=p
Putting p and q in place x, we get f(p)=q−pp(p−p)+(p−q)p(p−q)=p ⇒f(p)=p
and f(q)=q−pq(q−p)+(p−q)q(p−q)=q ⇒f(q)=q
Putting x=(p+q) f(p+q)=(q−p)(p+q)(p+q−p)+(p−q)(p+q)(p+q−q) =(q−p)(p+q)q+(p−q)(p+q)(p) =(q−p)pq+q2−p2−pq =q−pq2−p2=(q−p)(p−q)(q+p) =q+q =f(q)+f(p)
So, f(p)+f(q)=f(p+q)