Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
f (x) = | x - 1 |, f: R+ → R and g (x) = ex, g: [-1, ∞) → R. If the function fog (x) is defined, then its domain and range respectively are
Q.
f
(
x
)
=
∣
x
−
1∣
,
f
:
R
+
→
R
and
g
(
x
)
=
e
x
,
g
:
[
−
1
,
∞
)
→
R
. If the function fog
(
x
)
is defined, then its domain and range respectively are
3356
181
Relations and Functions - Part 2
Report Error
A
(
0
,
∞
)
and
[
0
,
∞
)
12%
B
[
−
1
,
∞
)
and
[
0
,
∞
)
25%
C
[
−
1
,
∞
)
and
[
1
−
e
1
,
∞
]
25%
D
[
−
1
,
∞
)
and
[
e
1
−
1
,
∞
]
38%
Solution:
f
(
x
)
∣
x
1∣
=
⎩
⎨
⎧
1
−
x
,
x
−
1
,
0
<
x
<
1
x
≥
1
g
(
x
)
=
e
x
,
x
3
≥
−
1
(
f
o
g
)
(
x
)
=
⎩
⎨
⎧
1
−
g
(
x
)
,
g
(
x
)
−
1
,
0
<
g
(
x
)
<
1
i
.
e
.
−
1
≤
x
<
0
g
(
x
)
≥
1
i
.
e
.
0
≤
x
=
⎩
⎨
⎧
1
−
e
x
,
e
x
−
1
,
−
1
≥
x
<
0
x
≥
0
∴
domain
=
[
−
1
,
∞
)
fog is decreasing in
[
−
1
,
0
)
and increasing in
[
0
,
∞
)
f
o
g
(
−
1
)
=
1
−
e
1
and
f
o
g
(
0
)
=
0
As
x
→
∞
,
f
o
g
(
x
)
→
∞
,
∴
range
=
[
0
,
∞
)
∴
x
=
2
1
l
o
g
e
(
2
−
y
y
)