Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
f(x)=| sec x cos x cosec2x cos2x cos2x cosec2x 1 cos2x cos2x | Then, ∫0π/2 f(x) dx=....
Q.
f
(
x
)
=
∣
∣
sec
x
co
s
2
x
1
cos
x
co
s
2
x
co
s
2
x
cose
c
2
x
cose
c
2
x
co
s
2
x
∣
∣
Then,
∫
0
π
/2
f
(
x
)
d
x
=
....
1171
199
IIT JEE
IIT JEE 1987
Report Error
A
B
C
D
Solution:
Given,
f
(
x
)
=
∣
∣
sec
x
co
s
2
x
1
cos
x
co
s
2
x
co
s
2
x
cosec
x
.
co
t
x
+
se
c
2
x
cose
c
2
x
co
s
2
x
∣
∣
Applying
R
3
→
cos
x
1
R
3
,
f
(
x
)
=
cos
x
∣
∣
sec
x
co
s
2
x
sec
x
cos
x
co
s
2
x
co
s
2
x
cosec
x
.
co
t
x
+
se
c
2
x
cose
c
2
x
cos
x
∣
∣
Applying
R
1
→
R
1
−
R
3
⇒
f
(
x
)
=
cos
x
∣
∣
0
co
s
2
x
sec
x
0
co
s
2
x
co
s
2
x
cosec
x
.
co
t
x
+
se
c
2
x
−
cos
x
cose
c
2
x
cos
x
∣
∣
=
(
cosec
x
.
co
t
x
+
se
c
2
x
−
cos
x
)
.
(
co
s
3
x
−
cos
x
)
.
cos
x
=
−
[
s
i
n
2
x
.
co
s
2
x
s
i
n
2
x
+
co
s
2
x
−
co
s
3
x
.
s
i
n
2
x
]
.
co
s
2
x
.
s
i
n
2
x
=
−
s
i
n
2
x
−
co
s
3
x
(
1
−
s
i
n
2
x
)
=
−
s
i
n
2
x
−
co
s
5
x
∴
∫
0
π
/2
f
(
x
)
d
x
=
−
∫
0
π
/2
(
s
i
n
2
+
co
s
5
x
)
d
x
∴
∫
0
π
/2
f
(
x
)
d
x
=
−
∫
0
π
/2
(
s
i
n
2
x
+
co
s
5
x
)
d
x
[
∵
∫
0
π
/2
s
i
n
m
x
.
co
s
n
x
d
x
=
2
2
m
+
n
+
2
2
m
+
1
2
n
+
2
]
∫
0
π
/2
f
(
x
)
d
x
=
−
{
2
2
2
5
,
2
1
+
2
2
7
2
2
3
1
}
=
−
{
2
1/2.
π
+
2.
2
5
.
2
3
.
2
1
.
π
2
π
}
=
−
{
4
π
+
15
8
}
=
−
(
60
15
π
+
32
)