Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
f(x)=( log (π+x)/ log (e+x)) is
Q.
f
(
x
)
=
l
o
g
(
e
+
x
)
l
o
g
(
π
+
x
)
is
1396
195
Application of Derivatives
Report Error
A
increasing in
[
0
,
∞
)
13%
B
decreasing in
[
0
,
∞
)
27%
C
decreasing in
[
0
,
e
π
]
&
increasing in
[
e
π
,
∞
)
40%
D
increasing in
[
0
,
c
π
]
\& decreasing in
[
e
π
,
∞
)
20%
Solution:
We have
e
<
π
and
f
′
(
x
)
=
{
l
o
g
(
e
+
x
)
}
2
π
+
x
1
l
o
g
(
e
+
x
)
−
e
+
x
1
l
o
g
(
π
+
x
)
=
(
π
+
x
)
(
e
+
x
)
{
l
o
g
(
e
+
x
)
}
2
(
e
+
x
)
l
o
g
(
e
+
x
)
−
(
π
+
x
)
l
o
g
(
π
+
x
)
In
[
0
,
∞
)
, denominator
>
0
and numerator
<
0
,
since,
e
+
x
<
π
+
x
.
Hence,
f
(
x
)
is decreasing in
[
0
,
∞
)
.