Let f(x)=∫sin6xdx f(x)=∫cosec6xdx
From reduction formula, we have In=∫cosecnxdx =−n−1cosecn−2xcotx+n−1n−2In−2 ∴f(x)=5cosec4xcotx+54[3−cosec2xcotx+32I2] =5cosec4xcotx−54cosec2xcotx+158[−cotx] =5−(1+cot2x)2.cotx−154(1+cot2x)cotx −158(−cotx)(∵cosec2x=1+cot2x) =5−1[1+cot4x+2cot2x]cotx−154[cotx+cot3x] −158cotx =5−1[cotx+cot5x+2cot2x] 15−4cotx−154cot3x−158cotx =15−15cotx−5cot5x−1510cot3x =5−cot5x−32cot3x−cotx
It is a polynomial of degree 5 in cot x.