Given f′(x)=f(x)+∫01f(x)dx…(1) ∴f′′(x)=f′(x)⇒f′(x)f′(x)=1 ∴logf′(x)=x+logC ∴f′(x)=Cex…(2) =Cex+C1…(3)
Since f(0)=1 ∴1=Ce0+C1=C+C1 ∴C1=1−C ∴f(x)=Cex+1−C…(4)
By (1),(2),(4), we get Cex=Cex+1−C+0∫1(Cex+1−C)dx ⇒0=1−C+∣cex+(1−C)x∣01 ⇒0=1−C+Ce+(1−C)−C=2−3C+Ce ∴C(e−3)=−2 ⇒C=3−e2 C1=1−C=1−3−e2=3−e3−e−2=3−e1−e (By(3))
Hence f(x)=Cex+C1=3−e2ex+3−e1−e