Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
f(x) = ((e2x-1/e2x + 1)) is
Q.
f
(
x
)
=
(
e
2
x
+
1
e
2
x
−
1
)
is
1886
188
Application of Derivatives
Report Error
A
an increasing function
57%
B
a decreasing function
13%
C
an even function
30%
D
None of these
0%
Solution:
∵
f
(
x
)
=
e
2
x
+
1
e
2
x
−
1
∴
f
(
−
x
)
=
e
−
2
x
+
1
e
−
2
x
−
1
=
1
+
e
2
x
1
−
e
x
2
x
⇒
f
(
−
x
)
=
e
2
x
+
1
−
(
e
2
x
−
1
)
=
−
f
(
x
)
∴
f
(
x
)
is an odd function.
Now,
f
′
(
x
)
=
(
1
+
e
2
x
)
2
4
e
2
x
>
0
,
∀
x
∈
R
⇒
f
(
x
)
is an increasing function.