Q.
Events A, B, C are mutually exclusive events such that P(A)=33x+1,P(B)=41−x and P(C)=21−2x . The set of possible values of x
are in the interval.
P(A)=33x+1,P(B)=41−x, P(C)=21−2x ∵ For any event E,0≤P(E)≤1 ⇒0≤33x+1≤1,0≤41−x≤1
and 0≤21−2x≤1 ⇒−1≤3x≤2,−3≤x≤1 and −1≤2x≤1 ⇒−31≤x≤32≤−3≤x≤1,
and −21≤x≤21
Also for mutually exclusive events A, B, C, P(A∪B∪C)=P(A)+P(B)+P(C) ⇒P(A∪B∪C)=33x+1+41−x+21−2x ∴0≤31+3x+41−x+21−2x≤1 0≤13−3x≤12⇒1≤3x≤13 ⇒31≤x≤313
Considering all inequations, we get max{−31,−3,−21,31}≤x≤min{32,1,21,313} 31≤x≤21⇒x∈[31,21]