Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Evaluate the determinant Δ=| beginmatrixlog3 512&log4 3 log3 8 &log4 9 endmatrix|
Q. Evaluate the determinant
Δ
=
∣
∣
l
o
g
3
512
l
o
g
3
8
l
o
g
4
3
l
o
g
4
9
∣
∣
3207
189
Determinants
Report Error
A
15/2
62%
B
12
15%
C
14/3
18%
D
6
4%
Solution:
We have,
Δ
=
∣
∣
l
o
g
3
512
l
o
g
3
8
l
o
g
4
3
l
o
g
4
9
∣
∣
⇒
Δ
=
∣
∣
l
o
g
3
2
9
l
o
g
3
2
3
l
o
g
2
2
3
l
o
g
2
2
3
2
∣
∣
⇒
Δ
=
∣
∣
9
l
o
g
3
2
3
l
o
g
3
2
2
1
l
o
g
2
3
2
2
l
o
g
2
3
∣
∣
[
∵
l
o
g
a
p
m
n
=
p
n
l
o
g
a
m
]
⇒
Δ
=
(
9
l
o
g
3
2
)
×
(
l
o
g
2
3
)
−
(
2
1
l
o
g
2
3
)
(
3
l
o
g
3
2
)
⇒
Δ
=
9
(
l
o
g
3
2
×
l
o
g
2
3
)
−
2
3
(
l
o
g
2
3
×
l
o
g
3
2
)
⇒
Δ
=
9
−
2
3
⇒
Δ
=
2
15
[
∵
l
o
g
b
a
×
l
o
g
a
b
=
1
]