We have L=x→2lim3(x+6)−23(3x−5)(x+7)−3(2x−3)(00form)
Let x−2=t such that when x→2,t→0. Then L=t→0lim(t+8)31−2(3t+1)31(t+9)21−3(2t+1)21(00form) =23t→0lim(1+8t)31−(3t+1)31(1+9t)21−(2t+1)21(00form) =23t→0lim8t31−(3t)31219t−(2t)21=23241−1181−1=2334.