Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Evaluate:∫(tan θ +tan3θ/1+tan3 θ) dθ
Q. Evaluate:
∫
1
+
t
a
n
3
θ
t
an
θ
+
t
a
n
3
θ
d
θ
5639
225
Integrals
Report Error
A
−
3
1
l
o
g
∣
1
+
t
an
θ
∣
−
6
1
l
o
g
∣
∣
t
a
n
2
θ
−
t
an
θ
+
1
∣
∣
−
3
1
t
a
n
−
1
(
3
2
t
an
θ
−
1
)
+
C
0%
B
−
3
1
l
o
g
∣
1
+
t
an
θ
∣
+
6
1
l
o
g
∣
∣
t
a
n
2
θ
−
t
an
θ
+
1
∣
∣
+
3
1
t
a
n
−
1
(
3
2
t
an
θ
−
1
)
+
C
50%
C
−
3
1
l
o
g
∣
1
+
t
an
θ
∣
+
6
1
l
o
g
∣
∣
t
a
n
2
θ
+
t
an
θ
+
1
∣
∣
−
3
1
t
a
n
−
1
(
3
2
t
an
θ
+
1
)
+
C
25%
D
None of these
25%
Solution:
We have,
∫
1
+
t
a
n
3
θ
t
an
θ
+
t
a
n
3
θ
d
θ
∫
(
1
+
t
a
n
3
θ
)
t
an
θ
se
c
2
θ
d
θ
Putting
t
an
θ
=
t
⇒
se
c
2
θ
d
θ
=
d
t
, we get
I
=
∫
(
1
+
t
3
)
t
d
t
=
∫
(
1
+
t
)
(
t
2
−
t
+
1
)
t
d
t
Let
(
1
+
t
)
(
1
−
t
+
t
2
)
t
=
1
+
t
A
+
1
−
t
+
t
2
Bt
+
C
⇒
t
=
A
(
1
−
t
+
t
2
)
+
(
Bt
+
C
)
(
t
+
1
)
............
(
i
)
put
t
=
−
1
in
(
i
)
, we get
A
=
−
3
1
Comparing the coefficients of
t
2
and constant terms on both sides of
(
i
)
, we get
B
=
−
A
=
3
1
an
d
C
=
−
A
=
3
1
⇒
I
=
−
3
1
∫
1
+
t
1
d
t
+
3
1
t
2
−
t
+
1
t
+
1
d
t
⇒
I
=
−
3
1
∫
t
2
−
t
+
1
t
+
1
d
t
⇒
I
=
−
3
1
∫
1
+
t
1
d
t
+
6
1
∫
t
2
−
t
+
1
2
t
−
1
+
3
d
t
⇒
I
=
−
3
1
∫
1
+
t
1
d
t
+
6
1
∫
t
2
−
t
+
1
2
t
−
1
d
t
+
2
1
∫
(
t
−
2
1
)
2
+
(
2
3
)
2
1
d
t
⇒
I
=
−
3
1
l
o
g
∣
1
+
t
∣
+
6
1
l
o
g
∣
∣
t
2
−
t
+
1
∣
∣
+
2
1
⋅
2
3
1
t
a
n
−
1
(
2
3
t
−
2
1
)
+
C
⇒
I
=
−
3
1
l
o
g
∣
1
+
t
∣
+
6
1
l
o
g
∣
∣
t
2
−
t
+
1
∣
∣
+
3
1
t
a
n
−
1
(
3
2
t
−
1
)
∴
I
=
−
3
1
l
o
g
∣
1
+
t
an
θ
∣
+
6
1
l
o
g
∣
∣
t
a
n
2
θ
−
t
an
θ
+
1
∣
∣
+
3
1
t
a
n
−
1
(
3
2
t
an
θ
−
1
)
+
C