Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Evaluate: ∫(sin x/sin 4x) dx
Q. Evaluate :
∫
s
in
4
x
s
in
x
d
x
31862
173
Integrals
Report Error
A
−
8
1
l
o
g
∣
∣
1
−
s
in
x
1
+
s
in
x
∣
∣
+
4
2
1
l
o
g
∣
∣
1
−
2
s
in
x
1
+
2
s
in
x
∣
∣
+
C
53%
B
8
1
l
o
g
∣
∣
1
−
s
in
x
1
+
s
in
x
∣
∣
−
4
2
1
l
o
g
∣
∣
1
−
2
s
in
x
1
+
2
s
in
x
∣
∣
+
C
16%
C
−
8
1
l
o
g
∣
∣
1
−
s
in
x
1
+
s
in
x
∣
∣
+
4
2
1
l
o
g
∣
∣
1
+
2
s
in
x
1
−
2
s
in
x
∣
∣
+
C
14%
D
None of these
17%
Solution:
We have,
I
=
∫
s
in
4
x
s
in
x
d
x
=
∫
2
s
in
2
x
cos
2
x
s
in
x
d
x
=
∫
4
s
in
x
cos
x
cos
2
x
s
in
x
d
x
⇒
I
=
4
1
∫
cos
x
cos
2
x
1
d
x
=
4
1
∫
co
s
2
x
cos
2
x
cos
x
d
x
⇒
I
=
4
1
∫
(
1
−
s
i
n
2
x
)
(
1
−
2
s
i
n
2
x
)
cos
x
d
x
putting
s
in
x
=
t
⇒
cos
x
d
x
=
d
t
, we get
I
=
4
1
∫
(
1
−
t
2
)
(
1
−
2
t
2
)
d
t
L
e
t
t
2
=
y
. Then,
(
1
−
t
2
)
(
1
−
2
t
2
)
1
=
(
1
−
y
)
(
1
−
2
y
)
1
and
(
1
−
y
)
(
1
−
2
y
)
1
=
1
−
y
A
+
1
−
2
y
B
.
⇒
1
=
A
(
1
−
2
y
)
+
B
(
1
−
y
)
.......
(
i
)
Putting
y
=
1
an
d
y
=
2
1
res
p
ec
t
i
v
e
l
y
in
(
i
)
,
w
e
g
e
t
A
=
−
1
an
d
B
=
2
∴
(
1
−
y
)
(
1
−
2
y
)
1
=
−
1
−
y
1
+
1
−
2
y
2
⇒
(
1
−
t
2
)
(
1
−
2
t
2
)
1
=
−
1
−
t
2
1
+
1
−
2
t
2
2
⇒
I
=
4
1
∫
(
−
1
−
t
2
1
+
1
−
2
t
2
2
)
d
t
⇒
I
=
−
4
1
⋅
2
1
l
o
g
∣
∣
1
−
t
1
+
t
∣
∣
+
2
1
⋅
2
2
1
l
o
g
∣
∣
1
−
2
t
1
+
2
t
∣
∣
+
C
⇒
I
=
−
8
1
∣
∣
1
−
s
in
x
1
+
s
in
x
∣
∣
+
4
2
1
l
o
g
∣
∣
1
−
2
s
in
x
1
+
2
s
in
x
∣
∣
+
C