Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Evaluate: ∫(sin 2x/sin(x -(π)3) sin(x+(π)3) dx
Q. Evaluate:
∫
s
in
(
x
−
3
π
)
s
in
(
x
+
3
π
)
s
in
2
x
d
x
5511
222
Integrals
Report Error
A
l
o
g
∣
∣
s
in
(
x
+
3
π
)
∣
∣
−
l
o
g
∣
∣
s
in
(
x
−
3
π
)
∣
∣
+
C
11%
B
l
o
g
∣
∣
s
in
(
x
+
3
π
)
∣
∣
+
l
o
g
∣
∣
s
in
(
x
−
3
π
)
∣
∣
+
C
54%
C
l
o
g
∣
∣
s
in
(
x
−
3
π
)
∣
∣
−
l
o
g
∣
∣
s
in
(
x
+
3
π
)
∣
∣
+
C
19%
D
None of these
16%
Solution:
Let
I
=
∫
s
in
(
x
−
3
π
)
s
in
(
x
+
3
π
)
s
in
2
x
d
x
. then,
I
=
∫
s
in
(
x
−
3
π
)
s
in
(
x
+
3
π
)
s
in
{
(
x
−
3
π
)
+
(
x
+
3
π
)
}
d
x
⇒
I
=
∫
s
in
(
x
−
3
π
)
s
in
(
x
+
3
π
)
{
s
in
(
x
−
3
π
)
cos
(
x
+
3
π
)
+
cos
(
x
−
3
π
)
s
in
(
x
+
3
π
)
}
d
x
⇒
I
=
∫
{
co
t
(
x
+
3
π
)
+
co
t
(
x
−
3
π
)
}
d
x
⇒
I
=
l
o
g
∣
∣
s
in
(
x
+
3
π
)
∣
∣
+
l
o
g
∣
∣
s
in
(
x
−
3
π
)
∣
∣
+
C