Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Evaluate ∫ limits sin-1 ( (2x+2/√ 4x2+8x+13 ) )dx
Q. Evaluate
∫
s
i
n
−
1
(
4
x
2
+
8
x
+
13
2
x
+
2
)
d
x
2042
214
AIEEE
AIEEE 2000
Report Error
A
B
C
D
Solution:
Let
I
=
∫
s
i
n
−
1
(
4
x
2
+
8
x
+
13
2
x
+
2
)
d
x
=
∫
s
i
n
−
1
(
(
2
x
+
2
2
)
+
9
2
x
+
2
)
d
x
Put 2x+2
=
3
t
an
h
e
t
a
⇒
2
d
x
=
3
se
c
2
h
e
t
a
d
h
e
t
a
∴
I
=
∫
s
i
n
−
1
(
9
t
a
n
2
h
e
t
a
+
9
3
t
anh
e
t
a
)
.
2
3
se
c
2
h
e
t
a
d
h
e
t
a
=
∫
s
i
n
−
1
(
3
sec
h
e
t
a
3
t
an
h
e
t
a
)
.
2
3
se
c
2
h
e
t
a
d
h
e
t
a
=
∫
s
i
n
−
1
(
cos
h
e
t
a
.
sec
h
e
t
a
s
in
h
e
t
a
)
.
2
3
se
c
2
h
e
t
a
d
h
e
t
a
=
2
3
∫
s
i
n
−
1
(
s
in
h
e
t
a
)
.
se
c
2
h
e
t
a
d
h
e
t
a
=
2
3
∫
h
e
t
a
.
se
c
2
h
e
t
a
d
h
e
t
a
=
2
3
[
h
e
t
a
.
t
an
h
e
t
a
−
∫
1.
t
an
h
e
t
a
d
h
e
t
a
]
=
2
3
[
h
e
t
a
t
an
h
e
t
a
−
l
o
g
sec
h
e
t
a
]
+
c
=
2
3
[
t
a
n
−
1
(
3
2
x
+
2
)
.
(
3
2
x
+
2
)
−
l
o
g
1
+
(
3
2
x
+
2
)
2
]
+
c
1
=
(
x
+
1
)
t
a
n
−
1
(
3
2
x
+
2
)
−
4
3
l
o
g
[
1
+
(
3
2
x
+
2
)
2
]
+
c
1
=
(
x
+
1
)
t
a
n
−
1
(
3
2
x
+
2
)
−
4
3
l
o
g
(
4
x
2
+
8
x
+
13
)
+
c
[
l
e
t
2
3
l
o
g
3
+
c
1
=
c
]