Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Evaluate: ∫ limits0π/2(1/2 cos x +4 sin x) dx
Q. Evaluate:
0
∫
π
/
2
2
cos
x
+
4
s
in
x
1
d
x
1722
189
Integrals
Report Error
A
5
l
o
g
(
2
3
+
5
)
0%
B
5
1
l
o
g
(
2
3
−
5
)
50%
C
5
1
l
o
g
(
2
3
+
5
)
50%
D
None of these
0%
Solution:
We have,
I
=
0
∫
π
/2
2
cos
x
+
4
s
in
x
1
d
x
⇒
I
=
0
∫
π
/2
2
(
1
+
t
a
n
2
2
x
1
−
t
a
n
2
2
x
)
+
4
(
1
+
t
a
n
2
2
x
2
t
an
2
x
)
1
d
x
⇒
I
=
0
∫
π
/2
2
−
2
t
a
n
2
2
x
+
8
t
an
2
x
se
c
2
2
x
d
x
Let tan
2
x
=
t
⇒
2
1
se
c
2
2
x
d
x
=
d
t
Also,
x
=
0
⇒
t
=
0
an
d
x
=
2
π
⇒
t
=
1
∴
I
=
0
∫
1
2
−
2
t
2
+
8
t
2
d
t
=
0
∫
1
−
[
(
t
−
2
)
2
−
5
]
d
t
=
0
∫
1
(
5
)
2
−
(
t
−
2
)
2
d
t
d
t
⇒
I
=
2
5
1
[
l
o
g
∣
∣
5
+
t
−
2
∣
∣
]
0
1
=
2
5
1
[
l
o
g
(
5
+
1
5
−
1
)
−
l
o
g
(
5
+
2
5
−
2
)
]
=
2
5
1
l
o
g
(
3
−
5
3
+
5
)
=
2
5
1
l
o
g
(
2
3
+
5
)
2
⇒
I
=
5
1
l
o
g
(
2
3
+
5
)