Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Evaluate: ∫ limits01 √2(sin-1 x/(1-x2)3/ 2) dx
Q. Evaluate:
0
∫
1
2
(
1
−
x
2
)
3/2
s
i
n
−
1
x
d
x
1943
188
Integrals
Report Error
A
4
π
−
2
1
l
o
g
2
36%
B
4
π
−
l
o
g
2
26%
C
2
π
−
l
o
g
2
26%
D
2
π
−
2
1
l
o
g
2
12%
Solution:
Let
s
i
n
−
1
x
=
θ
⇒
x
=
s
in
θ
.
T
h
e
n
,
d
x
=
cos
θ
d
θ
Now,
x
=
0
⇒
θ
=
0
and
x
=
2
1
⇒
θ
=
4
π
∴
I
=
0
∫
2
1
(
1
−
x
2
)
2
3
s
i
n
−
1
x
d
x
=
0
∫
4
π
(
co
s
2
θ
)
2
3
θ
cos
θ
d
θ
=
0
∫
4
π
θ
se
c
2
θ
d
θ
=
[
θ
t
an
θ
]
0
4
π
−
∫
0
4
π
1
⋅
t
an
θ
d
θ
=
(
4
π
−
0
)
+
[
l
o
g
cos
θ
]
0
4
π
=
4
π
−
2
1
l
o
g
2